Architectural louvres have a diverse range of uses for both engineers and building designers.
Required on most buildings to allow airflow in and out of the building, architectural louvres often have to provide protection from rain ingress.
Louvres can also be used to provide aesthetic and economic screening for unsightly equipment or building façades.
CS have been manufacturing and selling louvres globally for over 60 years.
Why CS Architectural Louvres
- industry leading performance characteristics
- unparalleled global experience
- worldwide technical support
- first class innovation & designs
- most spatially efficient models on the market
- up to 100% rain defence with some models
- robust blades up to 3x thicker than rolled blades
- up to date, relevant test information
Extensive Range Featuring
Rain Defence
Airflow
Screening
Acoustic
Louvre pressure drop is one of the key parameters of establishing the louvre requirements for your project as it’s based on the needs of the building and its ventilation system, rather than “free area” which doesn’t really mean anything.
Pressure drop is defined as the pressure differential from one side of a louvre to the opposite side, often expressed in Pascals (Pa). Louvre pressure drop occurs when frictional forces, caused by the resistance to flow, act on air moving through a louvre.
Increased louvre pressure drop can prevent equipment inside the ventilated area drawing sufficient air through the louvre, resulting in overheating, as the equipment has to work harder to draw the air through.
Guidance
Air Density (ρ)
is generally 1.225 kg/m³ (at sea level)
Volumetric Flow (qv)
is supplied by the ventilation engineer and relates to the amount of air required through the system
Core Area (A)
The minimum height times the minimum width of the front opening in a louvre assembly with the louvre blades removed.
Discharge Loss Coefficient (CD)
See chosen louvre model testing information.
Discharge Loss Guidance
Louvre Model | Penetration Class | Airflow Class | Discharge Loss Coefficient |
---|---|---|---|
RSH-5700 | A up to 3.0m/s | 3 | 0.289 |
RSV-5700 | A up to 3.5m/s | 3 | 0.297 |
RS-5605 | A up to 3.5m/s | 1 | 0.466 |
A-3105 | D up to 3.5m/s | 2 | 0.391 |
A-4080 | C up to 1.0m/s | 2 | 0.38 |
A-4085 | C up to 1.0m/s | 2 | 0.38 |
Use the table below to compare our Rain Defence & Ventilation Louvre models to find the right model for your project.
Model | Type | Blade Orientation | Appearance | Louvre Depth | Blade Pitch | Penetration Class | Airflow Class | Airflow Coefficient |
---|---|---|---|---|---|---|---|---|
RSH-5700 | Rain Defence | Horizontal | Modular [Visible Mullions] | 129mm | 51mm | A [up to 3.0m/s] | 3 | 0.289 |
RSV-5700 | Rain Defence | Vertical | Modular [Visible Mullions] | 129mm | 51mm | A [up to 3.5m/s] | 3 | 0.297 |
RS-5605 | Rain Defence | Vertical | Modular [Visible Mullions] | 131mm | 25mm | A [up to 3.5m/s] | 1 | 0.466 |
A-3105 | Ventilation | Horizontal | Continuous [Hidden Mullions] | 127mm | 75mm | D [up to 3.5m/s] | 2 | 0.391 |
A-4080 | Ventilation | Horizontal | Modular [Visible Mullions] | 102mm | 100mm | C [up to 1.0m/s] | 2 | 0.38 |
A-4085 | Ventilation | Horizontal | Continuous [Hidden Mullions] | 153mm | 100mm | C [up to 1.0m/s] | 2 | 0.38 |
La perte de charge est un paramètre essentiel dans la spécification d’une grille pour la ventilation d’un ouvrage. Ce résultat se base sur l’analyse des besoins en ventilation du bâtiment plutôt que la surface libre offerte, qui n’a pas d’intérêt aéraulique pour la structure.
La perte de charge résulte de la différence de pression constatée de part et d’autre de la grille. Exprimée en Pascal (Pa), la perte de charge dite linéaire est due aux frottements du flux d’air lors de son passage au travers des lames des grilles.
Si la perte est trop importante le flux d’air amené et requis par des équipements de ventilation, comme des CVC, sera insuffisant. Dès lors, les équipements demanderont plus d’énergie pour faire transiter l’air dans le réseau de ventilation, mais aussi pour se refroidir.
Guide
- La densité ρ = 1,225 kg/m3. Elle correspond à la densité de l’air sec au niveau de la mer à la température de 15°C.
- Débit volumique de ventilation en m3/s (qv) Cette donnée est fournie par l’ingénieur en charge de la ventilation et correspond au volume d’air ventilé requis pour le projet.
- Surface nette d’aération exprimé en m² (A) Cette donnée est propre à chaque grille de ventilation et est fournie dans ses spécifications.
- Coefficient de performance aéraulique Cette donnée est propre à chaque grille de ventilation et est fournie dans ses spécifications.

AMCA Certification
Construction Specialties Middle East, India, East & South Africa is proud to say that we are an AMCA member. You can view our certified products on AMCA’s website.